Формальные методы доказательства правильности программ и их спецификаций
Традиционные методы анализа ПО связаны с доказательством правильности программ (верификация программ). Начало этому направлению было положено работами П. Наура и Р. Флойда, в которых сформулирована идея приписывания точке программы так называемого индуктивного, или промежуточного утверждения и указана возможность доказательства частичной правильности программы (то есть соответствия друг другу ее предусловия и постусловия), построенного на установлении согласованности индуктивных утверждений.
Фундаментальный вклад в теорию верификации внес Ч. Хоор, высказавший идеи проведения доказательства частичной правильности программы в виде вывода в некоторой логической системе, а Э. Дейкстра ввел понятие слабейшего предусловия, позволяющее одновременно как соответствие друг другу предусловия и постусловия, так и завершимость. Методы доказательства правильности программ принесли определенную пользу программированию. Было отмечено, что эти методы указывают способ рассуждения о ходе выполнения программ, дают удобную систему комментирования программ и устанавливают взаимосвязи между конструкциями языков программирования и их семантикой. Если принять более широкое толкование термина "анализ программ", подразумевая доказательство разнообразных свойств программ или доказательство теорем о программах, то ценность методов анализа станет более ясной. В частности можно исследовать характер изменения выходных значений программы, количество операций при выполнении программы, наличие зацикливаний, незадействованных участков программы. Таким образом, в некоторых частных случаях методы верификации могут применяться и для доказуемого обнаружения программных дефектов.
Формальное доказательство в виде вывода в некоторой логической системе вполне надежно, но сами доказательства оказываются очень длинными и часто необозримыми. Рассмотрим следующий фрагмент программы.
integer r, dd; r:=a; dd:=d; while ddr do dd:=2*dd; while dd
d do dd:=2*dd; begin dd:=dd/2; if dd
r do r:=r-dd; end.
Должно соблюдаться условие, что целые константы a и d удовлетворяют отношениям ad и d>0.